

# **BAT165WS** SCHOTTKY BARRIER DIODE

#### **Features**

• Medium current schottky rectifier diode

## **Applications**

• For low-loss, fast-recovery, meter protection, bias isolation and clamping applications

#### **PINNING**

| PIN    | DESCRIPTION |
|--------|-------------|
| 1      | Cathode     |
| 2Anode |             |



## Absolute Maximum Ratings (T<sub>a</sub> = 25 oC)

| Parameter                         | Symbol           | Value         | Unit |
|-----------------------------------|------------------|---------------|------|
| Reverse Voltage                   | $V_{R}$          | 40            | V    |
| Average forward current           | IFAV             | 500           | mA   |
| Forward Current                   | l <sub>F</sub>   | 750           | mA   |
| Surge Forward Current (t ≤ 10 ms) | Iгям             | 2.5           | А    |
| Total Power Dissipation           | Ptot             | 600           | mW   |
| Junction Temperature              | TJ               | 150           | °C   |
| Storage Temperature Range         | T <sub>stg</sub> | - 65 to + 150 | °C   |

# Characteristics at T<sub>a</sub> = 25 ∘C

| Parameter                                                | Symbol         | Max. | Unit |
|----------------------------------------------------------|----------------|------|------|
| Forward Voltage<br>at I <sub>F</sub> = 10 mA             | V <sub>F</sub> | 0.4  | V    |
| at I <sub>F</sub> = 250 mA                               |                | 0.7  |      |
| Reverse Current at V <sub>R</sub> = 30 V                 | I <sub>R</sub> | 50   | μΑ   |
| at V <sub>R</sub> = 30 V, T <sub>a</sub> = 65 ∘C         |                | 900  |      |
| Diode Capacitance<br>at V <sub>R</sub> = 10 V, f = 1 MHz | C <sub>T</sub> | 12   | pF   |



## **Typical Characteristics**

## Diode capacitance $C_T = f(V_R)$

f = 1MHz



#### Reverse current $I_R = f(V_R)$

 $T_A = Parameter$ 



#### Forward current $f_F = f(V_F)$

 $T_A$  = Parameter



#### Forward current $I_F = f(T_S)$





## **PACKAGE OUTLINE**

#### Plastic surface mounted package; 2 leads

**SOD-323** 

